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ABSTRACT

Graph clustering aims to group the data into clusters accord-
ing to a similarity graph, and has received sufficient attention
in computer vision. As the basis of clustering, the quality
of graph affects the results directly. In this paper, a Robust
Adaptive Sparse Learning (RASL) method is proposed to im-
prove the graph quality. The contributions made in this paper
are three fold: (1) the sparse representation technique is em-
ployed to enforce the graph sparsity, and the `2,1 norm is in-
troduced to improve the robustness; (2) the intrinsic manifold
structure is captured by investigating the local relationship of
data points; (3) an efficient optimization algorithm is designed
to solve the proposed problem. Experimental results on vari-
ous real-world benchmark datasets demonstrate the promising
results of the proposed graph-based clustering method.

Index Terms— Clustering, Manifold Structure, Graph
Construction, Sparse Learning

1. INTRODUCTION

Data clustering partitions the data points into different cat-
egories, and is a hot research area in computer vision and
machine learning. In the past decades, plenty of techniques
have been proposed toward this topic, such as k-means clus-
tering [1], multiview clustering [2–4], graph clustering [5–8],
Non-negative Matrix Factorization (NMF) [9], and support
vector clustering [10]. Among these methods, graph cluster-
ing achieves the state-of-the-art performance because of the
utilization of data relationship, and has been used in many
practical applications, such as document clustering [11] and
image segmentation [8], etc.
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Graph clustering methods (e.g., spectral clustering [5], ra-
tio cut [6] and normalized cut [8]) are based on the graphical
representation of data relationship. These methods first trans-
form the data points into a weighted graph according to their
distances, and then perform graphical optimization to accom-
plish the clustering task. So the quality of graph determines
the clustering performance directly. However, there are main-
ly three problems on graph construction: (1) most methods
rely on the Gaussian weighting graph, which is largely af-
fected by the scale of analysis; (2) the data noise and outliers
make the obtained graph inaccurate; (3) the data manifold is
always neglected in the graph construction procedure. Some
methods [12, 13] have been presented to solve the first two
problems, but the third one is still unsolved. In addition, the
similarity between the dissimilar points should be zero intu-
itively, which indicates the sparsity of obtained graph. How-
ever, only a few papers [14, 15] emphasize this aspect.

In this research, we propose a Robust Adaptive Sparse
Learning (RASL) method to reduce the above problems. The
data graph is constructed with the sparse learning formula-
tion, and the `2,1 norm is incorporated to mitigate the im-
pact of data noise and outliers. And the manifold structure
is exploited according to the local connectivity between data
points. Quantitative experimental results show that the pro-
posed RASL achieves better performance compared with the
state-of-the-arts.

2. METHODOLOGY

In this section, the sparse representation method is introduced
as the preliminary. Then we formulate the proposed Robust
Adaptive Sparse Learning (RASL) objective function, and in-
troduce the corresponding optimization method.



2.1. Preliminary

Suppose the data matrix is X = [x1, ...,xn] ∈ Rd×n, and
d and n are the data dimension and the number of samples
respectively. According to [14], the sparse representation
method learns a transformation vector β ∈ Rn×1 by solving
the following problem

min
β
||Xβ − y||22 + λ0||β||1, (1)

where y ∈ Rd×1 is the desired new representation, and λ0 is a
regularization parameter. The first term ensures that y ≈ Xβ,
and the second term guarantees the sparsity of the transforma-
tion. Sparse representation method reduces the computational
complexity significantly, and removes the irrelevant factors.
So it has been widely-used in many areas, such as face recog-
nition [16] and hyperspectral image processing [17].

Recently, a Simplex Sparse Representation (SSR) mod-
el [14] has been proposed to utilize the sparse representation
theory to learn the data similarity. The objective function of
SSR is written as

min
αi≥0,αT

i 1=1
||X−iαi − xi||22, (2)

where 1 ∈ R(n−1)×1 is a vector with all the elements equal
to 1, and X−i is the data matrix without the i-th column. And
αi ∈ R(n−1)×1 indicates the similarities between point i and
all the others. The above problem assumes that a data point
can be approximated by the linear combination of the others,
and the constraint αTi 1 = 1 has the similar effect to the spar-
sity constraint (second term) in Eq. (1). Thus, SSR is able to
learn a sparse similarity graph, and doesn’t need to determine
the scale of analysis. However, since the error for each da-
ta point is squared in the objective function, SSR is prone to
be affected by the outliers. Moreover, the local relationship
between the points is also neglected.

2.2. Robust Adaptive Sparse Learning Method

Here we propose the Robust Adaptive Sparse Learning
(RASL) method. Instead of optimizing the similarity vec-
tor of each point separately, we propose to learn the data
graph S ∈ Rn×n directly. So we have the following objective
function

min
S≥0,

∑
j Sij=1

||XS−X||2,1. (3)

Compared to the `2 norm in Eq. (2), the `2,1 norm in the above
problem mainly has two advantages: (1) it is more robust to
outliers and data noise than `2 norm (2) it is invariance to the
feature rotation [18].

In order to perceive the data manifold, it is essential to
capture the local relationship between data points. According
to the common sense, if xi and xj are close to each other, their

similarity Sij should be large. Then the objective function is
rewritten as

min
S≥0,

∑
j Sij=1

||XS−X||2,1 + λ1

∑
ij

||xi − xj ||22Sij , (4)

where λ1 is a parameter. Thus, the proposed RASL is able
to exploit the manifold structure, and learn the sparse data
graph with more robustness. After the graph S is obtained,
we compute the spectral vectors with Laplacian matrix, and
then accomplish the clustering by k-means. In the following
part, an efficient algorithm is developed to solve problem (4).

2.3. Optimization Algorithm

Since both the terms in problem (4) depend on S, we solve it
with the Augmented Lagrangian Multiplier (ALM) [19], and
introduce two auxiliary variables W = S and E = XW −X.
Then problem (4) is rewritten as the following ALM problem:

min
E,W,S

||E||2,1 + λ1

∑
ij

||xi − xj ||22Sij

+µ
2 ||E−XW + X + Λ1

µ ||
2
F

+µ
2 ||W − S + Λ2

µ ||
2
F

s.t.S ≥ 0,
∑
j Sij = 1

(5)

where µ ∈ R1×1 is a regularization parameter, Λ1 ∈ Rd×n
and Λ2 ∈ Rn×n are ALM multipliers to enforce the auxiliary
variable to be close to the target variable. S is first initial-
ized with an efficient method [12]. Then we can optimize one
variable while keeping the others fixed.

Update E:
When updating E, we fix W and S, and the objective

function becomes

min
E
||E||2,1 +

µ

2
||E−XS + X +

Λ1

µ
||2F . (6)

Denoting M = XS−X− Λ1

µ , then the problem is simplified
into

min
E
||E||2,1 +

µ

2
||E−M||2F . (7)

According to [18], the optimal E can be computed as

E:,i =

{
(1− 1

µ||M:,i||2 )M:,i, if ||M:,i||2 ≥ 1
µ

0, else
, (8)

where mi and ei are the i-th column of M and E respectively.
Update W:
Optimizing W is equivalent to solving the following

problem:

min
W
||E−XW + X + Λ1

µ ||
2
F + ||W − S + Λ2

µ ||
2
F . (9)

Denoting A = E + X+ Λ1

µ and B = S− Λ2

µ , the above prob-
lem is reduced to

min
W
||XW −A||2F + ||W −B||2F . (10)



Taking the derivation of Eq. (10) with respect to W and set-
ting it to zero, we can get the optimal solution as

W = (XTX + I)−1(XTA + B). (11)

Update S:
With E and W fixed, problem (4) becomes

min
S
λ1

∑
ij

||xi − xj ||22Sij + µ
2 ||W − S + Λ2

µ ||
2
F

s.t.S ≥ 0,
∑
j Sij = 1

(12)

Denoting C = W + Λ2

µ , the above problem can be solved by
optimizing each row separately:

min
S
λ1

∑
j

||xi − xj ||22Sij + µ
2

∑
j

||Cij − Sij ||22 (13)

Denoting pij = ||xi − xj ||22 and denoting a column vector
pi with the j-th element equal to pij (and denoting si and ci
similarly), the above problem can be written as a closed-form:

min
si≥0,sTi 1=1

||si − ci +
λ1

2µ
pi||22, (14)

which can be solved with an efficient iterative algorithm [14].
Update ALM Parameters:
The ALM parameters Λ1, Λ2 and µ are updated in each

iteration according to [19]:

Λ1 = Λ1 + µ(E−XW + X),

Λ2 = Λ2 + µ(W − S),

µ = ρµ,

(15)

where ρ is a parameter (set as 1.5 in the experiments).
During the optimization of each variable, a closed-form

solution is obtained. So the objective value of ALM prob-
lem (5) decreases in each iteration. Moreover, problem (5)
will converge to the original problem (4) as µ increases expo-
nentially. So the proposed problem will converges to a local
minimum value finally. And the details of the proposed RASL
is summarized in Algorithm 1.

Algorithm 1 Robust Adaptive Sparse Learning
Input: Data matrix X, cluster number c, parameter λ1, ρ.

1: Initialize data graph S.
2: repeat
3: Update E with Eq. (8).
4: Update W with Eq. (11).
5: Update S by solving problem (14).
6: Update Λ1, Λ2 and µ.
7: until Converge
8: Perform k-means with the spectral vectors of S.

Output: Clustering results.

3. EXPERIMENTS

3.1. Performance on Toy Dataset

In this part, a toy dataset is built to validate the capability on
exploiting local data structure.

Dataset: As shown in Fig. 1 (a), the toy dataset consists
of 200 randomly generated points from two clusters. And the
points from each cluster are distributed in the moon shape.

Competitors: The Self-Tuning Spectral Clustering (ST -
SC) [20] and Simplex Sparse Representation (SSR) [14] are
taken as competitors. STSC constructs the Gaussian graph
with the self-tuned scaling parameter, while SSR learns the
graph with sparse representation.

Performance: Fig. 1 (b)-(d) shows the graphs construct-
ed by STSC, SSR and the proposed RASL. The points are
connected with green lines if their similarities are larger than
0.01. It can be seen that the graphs of STSC and SSR in-
correctly connect the points from different classes. And for
RASL, there is no line between the two clusters, and all the
points within the same cluster are connected together. STSC
and SSR fail to capture the local relationship between points,
so they cannot learn the graph with clear structure. The pro-
posed RASL captures the local data relationship with the
graph regularization term, so it is able to exploit the manifold
structure. In addition, compared with STSC and SSR, RASL
connects the points with less lines, which demonstrates that
the graph learned by RASL is very sparse.

3.2. Performance on Real-World Datasets

Eight real-world datasets are used to evaluate the clustering
performance of the proposed RASL.

Datasets: The experiments are conducted on eight
datasets, including two handwritten digit dataset, i.e., Binary
Alphabet (BA) [21] and subset of Mnist [22], one face dataset,
i.e. Yale [23], one biology dataset, i.e., Carcinom [24], and
four datasets from UCI Machine Learning Repository [25],
i.e., Control, Dermatology, Movement and Iris.

Competitors: The proposed RASL is compared with
eight state-of-the-art methods , including k-means, Ratio Cut
(RCut) [6] Normalized Cut (NCut) [8], NMF [9], Constrained
Laplacian Rank L1-norm (CLR L1) [12], Constrained Lapla-
cian Rank L2-norm (CLR L2) [12], Clustering with Adaptive
Neighbors (CAN) [13] and SSR [14]. For k-means, RCut and
NCut, the affinity graph is constructed with the self-tune
Gaussian method [20]. For CLR L1, CLR L2 and CAN,
the graph is initialized by the method in [12], and the neigh-
borhood size is set as 5. In addition, we repeat k-means,
RCut, NCut and the proposed RASL for 200 times and report
the average results, since all of them involve the k-means
processing. And the parameter λ1 of RASL is set as 0.1
empirically.

Performance: The quantitative comparison of differen-
t methods is shown in Table 1. Except for the lower ACC
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Fig. 1. Performance on toy dataset. Green lines connect the points whose similarities are larger than 0.01.

Table 1. The averaged ACC/NMI of different methods. The best results are in bold face.

Datasets k-means RCut NCut NMF CLR L1 CLR L2 CAN SSR RASL

BA 0.41/0.57 0.15/0.24 0.42/0.57 0.18/0.30 0.28/0.44 0.13/0.19 0.31/0.40 0.11/0.26 0.46/0.62
Mnist 0.43/0.35 0.13/0.10 0.37/0.32 0.42/0.33 0.14/0.05 0.13/0.02 0.25/0.17 0.36/0.42 0.45/0.46
Yale 0.44/0.51 0.25/0.30 0.51/0.56 0.34/0.39 0.50/0.59 0.43/0.48 0.50/0.58 0.58/0.59 0.59/0.61

Carcinom 0.55/0.56 0.30/0.23 0.65/0.66 0.48/0.48 0.67/0.65 0.50/0.52 0.51/0.47 0.72/0.75 0.73 /0.76
Control 0.69/0.73 0.57/0.72 0.68/0.72 0.50/0.41 0.58/0.73 0.58/0.73 0.57/0.74 0.53/0.58 0.71 /0.75

Dermatology 0.70/0.80 0.66/0.69 0.92/0.88 0.70/0.64 0.84/0.87 0.83/0.86 0.83/0.85 0.95/0.91 0.94/0.92
Movement 0.44/0.57 0.40/0.52 0.46/0.59 0.36/0.42 0.43/0.61 0.48/0.63 0.48/0.63 0.26/0.30 0.50 /0.64

Iris 0.78/0.63 0.54/0.58 0.54/0.58 0.49/0.38 0.58/0.59 0.58/0.57 0.46/0.27 0.69/0.58 0.83/0.64

on Dermatology, the proposed RASL obtains the best perfor-
mance under all circumstances. Especially on Iris, RASL out-
performs the second best one a lot. k-means, RCut, NCut and
NMF fail because they neglect the graph sparsity. CLR L1,
CLR L2 and CAN learn a sparse graph by constraint the rank
of the Laplacian matrix, while SSR borrows the sparse repre-
sentation framework. But these methods can only capture the
flat sparsity and ignore the local correlations between points.
The proposed RASL is robust to noise with the `2,1 norm
objective function, and exploit the local data relationship to
learn the affinity graph. So it achieves the best clustering per-
formance.

Furthermore, to evaluate the robustness of RASL, we ran-
domly occlude each face image in the Yale dataset with a 3×3
black area. Some representative clustering results of CAN,
SSR and RASL are shown in Fig. 2. Both of CAN and SS-
R cluster the first image into the wrong class, while RASL
performs well. Since the `2 norm objective functions of CAN
and SSR square the residue error of each sample, they are sen-
sitive to noise. The proposed RASL learns the graph with the
`2,1 norm, so it is robust to the data noise and achieves good
performance on the occluded face data.

4. CONCLUSIONS

In this paper, a Robust Adaptive Sparse Learning method is
proposed for graph clustering. The proposed method is able
to learn a sparse data graph, and it is robust to data noise with

(a) Clustered by CAN

(b) Clustered by SSR

(c) Clustered by RASL

Fig. 2. Clustering results of CAN, SSR and RASL on occlud-
ed Yale dataset. Red square boxes show the incorrect results.

the `2,1 norm objective function. In addition, by capturing
points’ relationship adaptively, our method exploits the lo-
cal data manifold during the graph learning procedure. So
it is suitable to handle data with complex structure. In the
optimization, the RASL objective function is decomposed in-
to three closed-form sub-problems, which ensures its conver-
gence. Extensive experiments on various real-world datasets
show that RASL outperforms the state-of-the-art methods.
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